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Amongsb the more important laboratory experiments which have produced 
concentrated vortices in rotating tanks are the sink experiments of Long and 
the bubble convection experiments of Turner & Lilly. This paper describes a 
numerical experiment which draws from the laboratory experiments those 
features which are believed to be mosb relevanb to atmospheric vortices such as 
tornadoes and waterspouts. 

In  the numerical model the mechanism driving the vorbices is represented by 
an externally specified vertical body force field defined in a narrow neighbour- 
hood of the axis of rotation. The body force field is applied to a tank of fluid 
initially in a state of rigid rotation and the subsequent flow development, is 
obtained by solving the Navier-Stokes equations as an initial-value problem. 

Earlier investigations have revealed that concentrabed vortices will form only 
for a restricted range of flow parameters, and for the numerical experiment this 
range was selected using an order-of-magnitude analysis of the steady Navier- 
Sbokes equations for sink vortices performed by Morton. With values of the 
flow parameters obtained in this way, concentrated vortices with angular 
velocities up to 30 times that of the tank are generated, whereas only much weaker 
vortices are formed at other parametric stabes. The numerical solutions are also 
used to investigate the comparative effect of a free upper surface and a no-slip lid. 

The concentrated vortices produced in the numerical experiment grow down- 
wards from near the top of the tankuntil they reach the bottom plate whereupon 
they strengthen rapidly before reaching a quasi-steady state. In  the quasi-steady 
state the flow in the tank typically consists of the vortex at the axis of rotation, 
strong inflow and outflow boundary layers at the bottom and top plates respec- 
tively, and a region of slowly-rotating descending flow over the remainder of the 
tank. The flow is cyclonic (i.e. in the same sense as the bank) in the vortex core 
and over most of the bottom half of the tank and is anticyclonic over the upper 
half of the tank away from the axis of rotation. 

1. Introduction 
There have been a number of experiments designed to generate concentrated 

vortices in rotating tanks. In each case vortex production involves the concentra- 
tion, about the axis of rotation, of vorticity from the initial state of solid rotation 
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by a driving force field operating in a narrow neighbourhood of the axis of 
rotation. Long (1956, 1958, 1961) has made a detailed investigation of vortices 
produced by extracting fluid through a sink situated on either the top or bottom 
plate of a rotating tank of water. His earlier experiments (Long 1956) were 
concerned with vortices produced by withdrawing water through a hole ab the 
centre of the bottom plate, while in his later experiments (Long 1958,1961) water 
is withdrawn from the tank by a sink at the centre of the top plate. A very 
different mechanism for driving vortices in rotating tanks has been described 
by Turner & Lilly (1 963) and used later by Turner (1966) to obtain quantitative 
information about these vortices. The vortices of Turner & Lilly are driven by 
drag forces exerted on surrounding fluid by gas bubbles released near the axis of 
the tank by either nucleating carbonated water or steadily injecting air through 
a fine tube. I n  both cases the bubbles are allowed to  escape from the system at 
some part of the upper water surface without affecting the gross conservation 
of liquid. 

There has been no completely Satisfactory analytical investigation of con- 
centrated vortices. The time-dependent problem of following the development of 
the flow from an initial state of solid rotation until a concentrated vortex has 
formed is a t  present too difficult to  solve by direct analytical means. The problem 
of finding concentrated vortex solutions t o  the steady Navier-Stokes equations 
is also intractable unless strong assumptions are introduced. These assumptions 
often impose unphysical restrictions on the axial and radial development of the 
vortex or result in inadequate treatment of flow near the boundary over which 
the vortex forms (see, for example, the exact solutions of Burgers (1948) and 
Sullivan (1959)). The importance of the layer in which the vortex terminates a t  
the boundary has been realized for some time end the reader is referred to the 
detailed discussion by Morton (1966). I n  the case of vortices like those of Long 
(1958, 1961) and the air injection experiments of Turner & Lilly, which are 
inward flows over the lower terminating boundary layer, the control of inflow 
into the main vortex by the lower boundary layer may well exert a dominant 
influence on the whole structure of the vortex. The degree of this influence may 
possibly be illustrated by a comparison of tornado and waterspout vortices. 
It is suggested that tornadoes are more intense vortices than waterspouts a t  
least partly because tornadoes form over land, which is a rigid surface, while 
waterspouts form over water, which is a yielding surface. Since a rigid surface 
will disrupt the centrifugal force-pressure gradient balance to a much greater 
extent than a yielding surface, waterspouts have better matched boundary 
termination than tornadoes and are likely to  achieve markedly weaker flow for 
a given driving force.? Analytical solutions simultaneously satisfactory for both 
the main vortex and the lower boundary layer do not exist and the analytical 
procedure presently in favour for obtaining solutions to  the complete problem 

t An experiment on the effect of a yielding end boundary has recently been carried out 
at the GFD Laboratory, Monash University, and will be reported shortly. The results 
of this experiment show that for a given flow force laminar vortices which have formed over 
a yielding boundary are some 20-30 yo weaker than those which have formed over a rigid 
boundary. 
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consists of matching a vortex solution, which is satisfactory in the interior of the 
fluid, to  a boundary-layer solution for the lower boundary. On this basis Turner 
(1966) has matched an interior solution obtained from the series expansion 
technique of Lewellen (1962) to a boundary-layer solution of Rogers & Lance 
(1960). Despite the approximate nature of his procedure Turner has reported 
good general agreement with his experimental vortices. 

The development of fast digital computers and associated numerical tech- 
niques in the past decade has made possible the numerical investigation of 
various flows produced by driving fluid contained in a rotating tank, or between 
two co-axial rotating tanks, away from a state of solid rotation. Williams (1967) 
has numerically simulated the development of the flow between two co-axial 
tanks rotating at  the same rate, but whose walls are maintained at  different 
temperatures, by replacing the time-dependent Navier-Stokes equations with 
an approximating set of difference equations. Such numerical solutions are 
attractive when compared with available analytical investigations of the same 
problems for two main reasons: they enable the time-dependent problem to be 
attempted, and they allow problems of great generality to be handled with 
comparative ease. The numerical procedure described by Williams may be used 
with only slight modification to simulate the development of vortices broadly 
similar to those of Long and Turner & Lilly, provided that the boundary con- 
ditions and driving mechanisms of the experiments can be adequately modelled. 

Whereas the driving mechanism for Long’s vortices is contained in the suction 
boundary conditions at  the exhaust hole, that in the experiments of Turner & 
Lilly is provided by an internal distribution of oriented drag force. It is suggested 
that the effect of these drag forces may, for the purposes of a revealing numerical 
experiment, be modelled satisfactorily by introducing a field of vertical body 
force specified both in magnitude and position, and defined in a narrow neigh- 
bourhood of the upper one-third of the axis of rotation of the tank. The force 
field is imposed on the system at zero time and drives the system away from its 
initial state of solid rotation. The flow develops until eventually a balance is 
established between the generation of kinetic energy by the force field and its 
dissipation by viscous stresses. A steady state will then have been reached. If 
the flow parameters have been chosen correctly tihis flow pattern should prove 
to be a concentrated vortex in the sense that its vorticity level is many times that 
of the initial distribution, but otherwise relatively little amplification of the 
initial ambient vorticity is expected. 

The correct modelling of any natural phenomonen requires appropriate and 
careful selection of each one of a range of non-dimensional parameters, and this 
is especially so for bhe modelling of such geophysical vortices as tornadoes and 
waterspouts. There is some confusion in the literatiure in particular over tihe 
choice of appropriate Rossby numbers, and this is of special importance for vortex 
flows in which the vorticity may have originated from the rotation of the atmo- 
sphere with the earth, but where the developed vortex may dominate the 
relatively limited constraints of the ambient rotation from which it has been 
formed. Long (1956) characterized his experiments by a ‘Rossby number’ defined 
as the ratio of the volume efflux to the product of tank radius and circulation at 

1-2 
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the tank wall, and found that: for strong draining at  ‘Rossby numbers’ exceed- 
ing 0.3 the flow exhibited a draining pattern in which fluid is withdrawn from all 
parts of the tank (i.e. with only minor rotational constraint); but that as the 
‘Rossby number’ is decreased the sink draws increasingly from regions near 
the axis of rotation until at  ‘Rossby numbers ’ below 0.02 the flow approaches the 
sink in an intense vortex along the axis. Morton (1966) has pointed out the 
traditional role of the Rossby number as a measure of the constraint imposed 
on an internal flow by Coriolis forces in a fluid rotating as a whole, and has 
defined the Rossby number as the ratio of magnitudes of the relative local 
vorticity to the background vorticity . In  contrast, the experimental vortices 
of Long are so unconstrained by the background rotation of the tank that a 
similarity solution developed by Long (1958,1961) in an attempt to model them 
assumed the developed vortices to  behave as if they were in an environment 
free of vorticity. Morton suggested that, since flow patterns which are not greatly 
affected by background rotation (even if they may have had their origin in this 
ambient rotation) are customarily referred to as moderate or high Rossby 
number flows, Long’s ‘Rossby number’ should properly be re-defined with length 
scale appropriate t o  the vortex and not the vessel diameter. According to this 
interpretation tornadoes and waterspouts are moderate or high Rossby number 
flows and it is now possible to examine the experiments of Long and Turner & 
Lilly for relevance as models for tornado and waterspout vortices. Since the 
radius of the tank used in Long’s experiments is about an order of magnitude 
greater than the radius of his vortices, Long’s vortices prove to have re-defined 
Rossby numbers around 10 rather than the low ‘Rossby numbers’ of less than 
0.02 which he reported. Turner, on the other hand, used tank rotation rates of 
60 and 90rev/min, which are much greater than those used by Long. Con- 
sequently Turner’s vortices are indeed low Rossby number flows, the lateral 
constraints being so strong that the return flow occurs at a radius less than that 
of the tank, whereas the radial extent of Long’s vortices is controlled by the 
geometry of the tank. It is therefore suggested that Long’s experiments more 
nearly correctly model the relationship between geophysical vortices and the 
vorticity field from which they have developed, but that Turner’s experiments 
are not directly relevant to concentrated geophysical vortices. 

Preliminary numerical experiments conducted by the author have indicated 
that any advantage gained from the apparently simpler driving mechanism 
of Long’s experiments is more than offset by the computational difficulties 
associated with concentrated regions of outflow near the sink together with the 
regions of return source flow necessary to provide mass continuity for a steady- 
state final flow. In  the Turner & Ljlly experiments, however, the computations 
are enormously simplified by the fact that the whole wall of the tank is a stream 
surface. For these reasons a programme of numerical experiment was set up in 
which the driving mechanism for vortex generation corresponded more nearly 
to that of Turner & Lilly, but the flow parameters were chosen which lead to the 
development of concentrated vortices of moderate or high Rossby numbers 
approximately related t o  those observed by Long. The partial differential equa- 
tions to be solved numerically consist of the three Navier-Stokes momentum 



The development of concentrated vortices 5 

equations and the equation of continuity. The axial momentum equation contains 
a body force term which has constant and specified value which is non-zero 
only in a narrow neighbourhood of the axis of rotation, and which is first imposed 
at zero time. This device has the effect of eliminating the dependent buoyancy 
variable and its governing differential equation, which would be closely coupled 
with the momentum equations and would considerably increase the difficulty 
of solution, without eliminating the basic physical causes of vortex generation. 
Vortices such as dust-devils which are driven by thermal buoyancy effects 
cannot be modelled by using such a device since, whereas the convective and 
diffusive spread of buoyancy force can reasonably be neglected for the constantly 
released stream of bubbles in the experiments of Turner & Lilly, the convective 
and diffusive spread of thermal buoyancy force cannot be neglected. 

The experiments of Long, Turner & Lilly and others have revealed that con- 
centrated vortices will form only for a restricted range of values of the tank 
rotation rate and driving force. Since the numerical procedure requires large 
amounts of digital computer time to follow the system from its initial balanced 
state of solid rotation, it is necessary to have available effective estimates of 
the values of tank rotation rate and driving force which will lie within this range. 
Such estimates may be obtained by assuming that most of the vorticity of a 
fully developed concentrated vortex arises from re-distribution of the vorticity 
of the initial state; an order-of-magnitude analysis of the steady Navier-Stokes 
equations, similar to that carried out by Morton (1969) for sink vortices may then 
be used to estimate ranges of the flow parameters appropriate to the generation 
of concentrated vortices. 

2. The differential equations 
Consider a tank of height H and radius R filled with fluid and rotating with 

angular velocity i2 about a vertical axis. Let ( r ,  (p, z )  be cylindrical co-ordinates 
defined in a set of axes rotating with the cylinder and let the corresponding 
velocity components be (u, v ,  w). These components will be referred to as radial, 
zonal and vertical respectively (see figure 1). 

The equations of motion for an incompressible fluid with constant viscosity, 
assuming axial symmetry and the presence of a body force per unit mass, F, are 

a a 
ar a2 
- (ru)  + - (rw) = 0, (4) 

where p is the hydrostatic pressure deviation, p is the density and v is the 
kinematic viscosity. The number of dependent variables may be reduced by 
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FIGURE 1. The rotating tank and co-ordinate system used. 

introducing a stream function $, relating the radial and vertical components of 
velocity, such that 

u = l a @  w = - -  1 a$ 
r az ’ r ar 

and the zonal vorticity component 

au aw <=  
a~ ar * 

Equations (1)-(4) may now be replaced by a set of two prediction equatjons for 
v and 6: 

r l a@( 82 r) [i: :r(i i r  )] av i 
- + - J ( v ) = - -  2Q+- + v  -+- --(rv) , 
at r 

a5 - + J ( < / r ) = - - + + -  !2+- + v  -+- - - ( r < )  , 
at 

a s  a25 a 1 a 
ar az ( r) [a22 ar ( r  ar )] 

together with a diagnostic equation for @: 

where 

a (1 9) +!% = - < 
ar r ar r az2 

a+ a a@ a 
ar a2 az ar 

J (  ) = - - (  ) - - - ( )  

(5) 

(7) 

is the Jacobian form of the convective terms. 7!he form of the function F t o  be 
used in the numerical procedure will be described in the next section. 
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A comparison of the flow patterns for the separate cases of a no-slip lid rotating 
with the tank (case I) and a free upper surface (case 11) is of interest since Turner 
(1966) observed that his vortices behaved differently in each case. Turner found 
that vortices which formed under a free surface were more stable than those 
which formed under a no-slip lid. This is probably explained in terms of the greater 
disruption of the centrifugal forcepressure gradient balance by the rigid lid. 
Outward radial velocities below the rigid lid will be greater than those below the 
free surface and consequently vertical velocities in the core will be larger in 
case I .  Therefore Reynolds numbers for the vortex cores of case I will be greater 
than those of case I1 and consequently the vortices of case I are likely to be less 
stable when perturbed radially. In  case I1 the upper surface is assumed flat. This 
assumption is justified because the centrifugal accelerations are much smaller 
than gravitational acceleration for the tank geometry and rotation rates con- 
sidered here, even in the area above the vortex itself. The no-slip condition is 
also taken at 6he vertical wall and base of the tank. Thus, solutions to (5)-(7) 
are sought which satisfy the initial condition of solid rotation and the following 
boundary conditions: symmetry conditions at r = 0 (axis of rotation); no-slip 
conditions at r = R (waI1) and x = 0 (base); and either the no-slip condition 
(case I) or a free surface condition of zero stress (case 11) at z = H .  These boundary 
conditions may be summarized as: 

r = 0: $ = v = 5 = 0 (cases I and 11); (8) 

r = R: $ = v = O  

z = 0: 

z = H :  

(cases I and 11); 

* = v = o  1 
1 a2p (cases I and 11); 

5 = - ( - 7 )  r 8.2 a=O j 
$ = v = O  

(9) 

where the no-slip conditions (a$/%r)T=R = 0, (a$/%z),=, = 0 and (a$/&),=, = 0 
are to be incorporated into the finite-difference approximations to [ in (9), (10) 
and (1 1 a) respectively. 
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3. The difference equations 
The differential equations are to be replaced by an approximating set of finite- 

difference equations, defined on a uniform mesh in the r ,  z plane and at; times 
nAt (n = 0,1,2,  . . . ). There are L + 1 mesh nodes in the rad.ia1 direction and M + 1 
in the vertical direction, the spacing of the nodes being h (figure 2). Unequal 

FIGURE 2. The finite-difference mesh in a,n r ,  z section of the tank. 

increments Ar, Az in the radial and vertical directions could have been used but 
this was not considered necessary. The co-ordinates of the mesh nodes are 

r(Z) = ( I -  1)h 

z(m) = (m- 1)h (m = 1,2,  ... M +  l), 

(1 = 1,2,  ... L+ l), 

where h = H / N  = R/L and any variable, q5, defined on Che mesh at time nAt 
will be denoted by B(1, m, n). Following Lilly (1964) the averaging operation 8. 
and the differencing operation 8,s are defined by 

- 
0% = $[O(X+$AX)+B(X-+AX)] ,  

6,s = [O(X + $AX) - B(x - +Ax)]/Az.  

In  terms of these operators the difference equations approximating (5) to (7)  are 

1 -  
r 

6, ct + =Il(@) = - 6 , P  + 2 Q6, P + - 6,(v2)~ + v 

1 1 
8,8+-J2(v)  r = - ( 2 Q + v ) 6 , ~ + v  r (13) 

(14) 
1 g =  -,s,$-8, 
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The Jacobian conserving difference operators Jl(@) and J,(v) are the same as 
those used by Williams (1967) for the integration of the vorticity equation and 
the zonal momentum equation respectively over a vertical section of a rotating 
annulus. Such operators are needed to preserve certain integral constraints which 
exist on the convection terms. If these constraints arenot observed computational 
instability will arise owing to the uncontrolled aliasing of long and short wave- 
lengths (Phillips 1959). The diffusion terms also need careful treatment and 
Platzman (1963) has shown that the diffusion terms of (12) and (13) must be 
evaluated a t  times (n- 1) At to ensure (linear) computational stability of the 
difference equations. In the notation of Lilly (1964) this is indicated by the 
subscript ‘lag’. 

The difference analogues of the boundary conditions (8) to (1 1) are 

r = 0: $( l ,m,n)  = v( l ,m,n)  = C(l ,m,n)  = 0 (cases I a n d I I ) ;  (15) 

(cases I and 11); (16) 

(cases I and 11); (17) 

i 
I 

r = R: $(L+l,m,n)  = w(L+l ,m,n)  = 0 

g ( L + l , m , n )  = (l/Rh2)[3.5$(L+l,m,n) 

- 4$(L, m, n) + 0*5@(L - 1, m, n)] 

(case I); (18a) 

z = 0:  @(Z, 1,n)  = W(Z, 1 , n )  = 0 

!x1,  n) = ( l / m h 2 )  [3*5$(k 1 9 % )  

- 4$(L 2, n) + 0-5$(l, 3, n)l 

C(1,M-t 1 ,n )  = ( l /r(Z)h2)[3.5$(Z,M+1,n)  

z = H :  $(Z,M+l,n)  = v(Z,M+l,n)  = 0 

-4$(Z,M,n)+0-5@(Z,M- 1,n) l  

(case 11). (18b)  
@(Z,M+l ,n)  = C(Z,M+l,n) = 0 

w(Z,M+ 1,n)  = &[4w(l,M,n)-v(Z,M- 1,n) l  

The expressions (16), (1 7), (1 8a) for [ are finite-difference approximations t o  the 
differential forms (9), ( lo),  (11 a)  for 5, in which the no-slip conditions a$/& = 0 
(at r = R)  and a$jaz = 0 (at z = 0, H )  have been incorporated. These expressions 
were originally derived by Pearson (1965). Finally (18b), defining w, is a finite- 
difference approximation to (11 b).  

The body force field is defined to have the constant non-zero value F on the 
upper one-third of the axis of rotation, r = 0, and to be zero elsewhere. Since the 
numerical procedure uses values of the various fields a t  discrete points on a mesh, 
the body force is interpreted as being distributed over a cylinder of radius h, 
height $H and whose axis is the axis of rotation. 

4. The numerical procedure 

The numerical procedure consists of three basic steps which are repeated 
collectively until the desired time stage (usually the steady state) is reached. In  
the first step equations (12) and (13) are used to predict the v and 6 fields a t  

4.1. Outline of the procedure 
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interior points (2 6 1 < L, 2 6 m < M )  of the .mesh from the v, 5 and $ fields at  
preceding times nAt and (n- 1) At. The values of v at boundary points are always 
zero except for the upper surface of case 11, wh.en they are computed from (18 b). 
The second step involves solving (14) for @ using a trigonometric interpolation 
method (Williams 1967). It now remains to determine the vorticity 5, at boundary 
points. This constitutes the third step and is achieved by using boundary con- 
ditions (15) to (17)  and (18a)  (case I) or (18b) (case 11). When the three steps 
have been completed the v, 5 and @ fields are known at all points of the mesh at  
time stage (n + 1) At. It is now possible t o  repeat the process to obtain the fields 
at  time stage (n  + 2) At, and so on. 

4.2. Stability requirements 
Since, for each set of values of the flow parameters, several thousand time extra- 
polations are needed to bring the system to a steady state it was decided to use 
the long-term numerical integration scheme devised by Arakawa (1966). This 
scheme is recognized as stable subject to the restrictions imposed on the time 
step, At, by the (linearized) convection terms and the diffusion terms. The assump- 
tion that the upper surface is of constant height in both cases I and I1 removes 
the possibility of surface waves being generated. Also, since the fluid is assumed 
to be incompressible and unstriatified, there are no internal waves. Consequently 
the stability criteria employed were of the form At < h/(24 Urnax) and At < h2/8v, 
where Urnax is the modulus of the maximum velocity component which can occur 
in the system for a given set of flow parameters. 

4.3. The steady state 
A sbeady state of the flow will be reached when the rate of dissipation of kinetic 
energy by viscous stresses is equal to the rate of generation of kinetic energy 
by the applied body force. When this balance occurs, the total kinetic energy, 
E ,  of tihe system will remain constant. Lamb (1932) has shown that 

whereSs/. . . denotes an integration over the r ,  x cross-section. The system is 

assumed to have arrived at  a steady state when the finite-difference analogue 
of (19) suffers a relative change less than a prescribed value (usually 1 yo) over 
a given number of time extrapolations. 

5. The numerical solutions 
5.1.  #election of values for the Jlow parameters 

The experiments of Long, Turner & Lilly and others have revealed that con- 
centrated vortices will form only for a restricted range of values of the flow 
parameters. The numerical integrations are to be carried out on a CDC-3200 
computer and, since many hours of machine time are required to follow the 
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physical system to its steady state, it  is clearly not practicable to range widely 
over the possibly suitable values of the flow parameters. Therefore a good initial 
estimate of such quantities as tailk rotation rate and magnitude of the body force, 
for a given tank geometry, is needed. 

An estimate of the desired kind may be obtained from an order-of-magnitude 
analysis by Morton (1969) of the steady Navier-Stokes equations assuming the 
existence of a narrow, moderate or high Rossby number sink vortex. Suppose 
that U ,  V and W are characteristic magnitudes for the radial, zonal and vertical 
velocity components respectively of the vortex, and that Re is a characteristic 
radius at distance approximately 2 from the sink. Then Morton (1969, p. 317) 
has shown that for a laminar concentrated sink vortex the following relations 
hold: 

R, W / v  N I/. 9 1, (20) 

where a = RJZ 1 is the semi-angle of spread of the vortex, assumed small. 
The relationship (20) ensures that the vortex will be laminar, while the relation- 
ship (21) reflects the close coupling between the axial and azimuthal flow which 
is typical of this type of vortex. 

The expressions (20) and (21) may be used as follows to provide estimates for 
the driving force, F ,  and the tank rotation rate i2 which should result in the 
formation of concentrated vortices. The value of v is known and, for a given tank 
size, an estimate for Re may be made. The characteristic vertical velocities may 
now be estimated from (20) and are seen to be, for the tank used in the numerical 
experiments, a few centimetres per second. Preliminary experiments in a rotating 
tank of height H = 5 cm with F = 10 cm s e r 2  produced vertical velocities of 
2-3 cm sec-l near the axis of rotation. This value of F was found to be suitable 
for all of the numerical experiments. Finally, if it is assumed that most of the 
vorticity associated wibh the initial state of solid rotation has been redistributed 
into the concentrated vortex, an estimate for SZ can be made from (21) by setting 
V N R2i2, where R is the radius of the tank, and is found to be SZ N 0.1 radsec-1. 

5.2. Discussion of the results 

The numerical procedure was used to investigate the flow development for two 
different sets of values of the flow parameters. The value of F is kept constant 
throughout, but two values of SZ are used since, as well as using a value of SZ 
which is expected to result in the development of a concentrated vortex, i t  is 
desirable to have as a reference state the flow pattern in a non-rotating tank. 
Since the separate cases of a no-slip lid and a free upper surface were both ex- 
amined, a total of four numerical experiments were pursued to a steady state. 
The experiments labelled A 1, B 1 are carried out with a non-rotating tank and 
involve no-slip lid and free upper surface boundary conditions respectively, 
while A2,  B2 are the corresponding experiments with a rotating tank (see 
table 1). 
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Body force 
per unit Tank rota- 

name boundary points (I x cm) (cmsec-2) (rad BRC-1) 

Experiment upper No. of grid mass, F tion, R 

A1 No-slip lid 31 x 76 10 0 
B 1  Free surface 31 x 76 10 0 
A 2  No-slip lid 31 x 76 10 0.5 
I32 Free surface 31 x 76 10 0.5 

TABLE 1. Details of the flow param.eters and grids used 
in the numerical experiments 

It was seen in § 5.1 that values of l2 which are expected to result in the forma- 
tion of concentrated vortices are Q N 0.1 rad sec-l. To obtain a precise value of Q 
for use in the numerical experiments it was decided to run the numerical com- 
putations out to  600 time steps (with At = 0.05sec) for various values of l2 in 
the range O-O5radse~-~ to  1.0radsec-1. It was hoped that values of R which 
would ultimately result in strong vortex growth would be revealed within 600 time 
steps since, for reasons of economy, it was not possible to run out past 600 time 
steps for the range of values of l2 contemplated. It was found that values of Q of 
about 0.5 rad sec-l produced concentrated vortices with greater amplificati on 
after 600 time steps of the original solid-body rotation (about a factor of 10) than 
vortices generated in tanks rotating a t  angular velocities above and below this 
value. This value of Cl was considered to  be suitable for use in all the experiments 
with rotating tanks. 

I n  each of the numerical experiments the s.ystem requires about 3min real 
time (about 3000 time steps with At = 0.05) to reach a steady state. The results 
of the numerical experiments are described bel'ow. 

Experiments A 1 and B 1 (non-rotating tank) 
The streamlines for the steady-state flow of numerical expts. A 1 and B 1 are 
shown in figures 3(a )  and 3 ( b )  respectively. The outstanding feature is that, in 
the absence of tank rotation, no restrictions on. the radial motion of fluid in the 
interior of the tank are present and the body force draws fluid from all parts of 
the bottom half of the tank. I n  this respect expts. A 1 and B 1 contrast greatly 
with expts. A2 and B2 in which, as will be seen. below, radial inflow is restricted 
almost entirely to the bottom boundary layer. There is little difference between 
the streamline patterns of expts. A 1 and B 1 apart from the slightly greater 
ability of the free surface than the no-slip lid t o  allow the radial escape of the 
strong axial flow which arrives a t  the upper boundary after having been 
accelerated by the body force field. Maximum vertical velocities are about 
3 cm sec-' in each case. 
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Experiments A2 and B 2 (rotating tank) 
It was found that the flow parameters of numerical expts. A2 and B 2 led to the 
formation of intense vortices concentrated about the axis of the rotating tank. 
The steady-state streamlines, which are shown in figures 4(a) and 4(b), are seen 
to crowd together for nearly the whole length of the axis of rotation, thus in- 
dicating the presence of the strong axial flow characteristic of these vortices. 
The streamlines also reveal the existence, near the lower and upper boundaries, 
of strong boundary layers which control flow into and outflow from the vortex. 
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FIGURE 4. Contours of the steady-state streamlines for numerical ( a )  expt. A2 (rotating 
tank with no-slip upper surface); ( b )  expt. B 2 (rotating tank with free upper surface). 

The flow in the interior of the tank is mainly weak and vertically downwards. 
Vertical velocities are shown plotted as a function of height above the bottom 
plate for various radial distances from the axis of rotation (see figure 5 ) .  The 
stronger upflow associated with the rigid surface (numerical expt. A2) is evident. 
Contours of the steady-state zonal velocity have been plotted in figures 6 (a )  and 
( b ) .  They reveal the presence of anti-cyclonic flow (that is, flow in the opposite 
direction to that of the tank) in a region of approximately triangular shape, one 
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FIGURE 5. Vertical velocities in the vortex cores of expts. A 2 and B 2 are plotted 
against distance above bottom plate of tank. 

side coinciding with the upper boundary and the third vertex situated about 
halfway down the cylinder wall, and cyclonic flow elsewhere. The anticyclonic 
flow is weak but the cyclonic flow increases towards the axis of rotation and 
reaches a maximum, of around 20-30 times the rotation rate of the tank, at 
about 0.2 cm from the axis (see table 2). It is also observed that in the vortex 
core the zonal velocity is of the same magnitude as the vertical velocity, a 
feature which is characteristic of vortices of the type considered here. 

Maximum Maximum 
amplification vertical 

Experiment upper of tank velocity 
name boundary rotation ( x ) (cmsec-1) 

A2 No-slip lid 29 2.9 
B 2  Free surface 22 2.5 

TABLE 2. Values of maximum vertical velocity and maximum amplification 
of tank rotation rate for expts. A 2 and B 2 

In contrast with expts. A 1 and B 1 there is a very significant difference between 
the flow patterns of expts. A2 and B 2. The vortex which forms in expt. A2 (no- 
slip lid) is considerably stronger than that of expt. B2 (free upper surface), 
as is evident from the larger vertical velocities and greater amplification of tank 
rotation rate in the vortex core (see table 2). The explanation for the difference 
in vortex strengkh is essentially the same as that offered in $ 1  to explain the 
difference in strength between tornado and waterspout vortices, namely, the 
greater disruption of the centrifugal forcepressure gradient balance by the rigid 
surface than the free surface. This greater disruption means there is a larger 
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FIGURE 6. Zonal velocity contours for numerical expts. A 2 and B 2 at steady state. 

unbalanced radial pressure gradient to drive fluid radially away from the vortex 
and consequently greater axial flow is possible in the vortex. Finally, since the 
zonal velocity and the vertical velocity are always of the same order of magnitude 
for this type of vortex, zonal belocities will be larger for vortices which form 
under a no-slip lid. 

Perhaps the most important advantage the presenb numerical solution has 
over the existing analytical vortex solutions, except for the decaying vortex 
solution of Barcilon (1967), is that it  is a time-dependent solution and thereby 
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FIGTJRE 7. Streamline contours for numerical expt. A 2  after 600 and 
1200 time extrapolations. 

enables the successive stages of vortex development to be identified. Briefly, the 
vortex grows down from the top to the bottom of the rotating tank and the basic 
processes involved will now be outlined. Immediately after the body force has 
been applied, fluid in the tank begins to move (relative to the initial state of rigid 
body rotation) under its action. Fluid near the region in which the body force 
operates has an inwards radial velocity component and produces a cyclonic zonal 
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FIGURE 8. Zonal velocity contours of numerical expt. A 2 after 600 and 

1200 time extrapolations. 

flow owing to Coriolis forces. This leads to the formation of a local centrifugal 
force-pressure gradient balance which inhibits any additional radial entrain- 
ment by the body force at  %hat level. Free or relatively free radial entrainment of 
fluid becomes possibIe only at successiveIy greater distances from the top of 
the tank and so the vortex extends progressively downwards until it begins to 
interact with the bottom boundary. Figures 7 and 8 show the streamlines and 
zonal velocity contours respectively of expt. A2 after both 600 and 1200 time 
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steps. When the vortex interacts with the bottom plate of the tank (which it 
does after about 1800 time steps) it suffers accelerated amplification over its 
entire length because the bottom boundary layer can support a considerable 
pressure gradient and hence a considerable reduction in pressure throughout the 
core occurs as Che bottom boundary layer is established, with consequent 
strengthening of the whole vortex. 

6. Concluding remarks 
It has been shown that a direct numerical solution to the Navier-Stokes equa- 

tions may be used to obtain a considerable amount of information about the 
development and structure of the experimental vortices of Long (1956, 1958, 
1961) and Turner & Lilly (1963); certainly much more than is provided by the 
existing analytical solutions. Since the experiments of Long (1958, 1961) and 
Turner (1966) were at least partly motivated by an attempt to model geo- 
physical vortices like the tornado vortex, the next questions to ask are (i) ‘how 
relevant are these experimental vortices as models for the tornado vortex’, and 
(ii) ‘if modifications to the experimenbs are necessary to make them relevant, 
can the numerical procedure be adapted to handle these modifications’ Z 

Although there is a great deal of speculation about the structure of the tornado 
vortex, even about basic aspects such as whether there is downflow in the vortex 
and the relative importance of buoyancy forces in the vortex itself, the first 
question (i) may still be answered from what is thought to be known of the nature 
of the tornado vortex. It appears that the tornado vortex consists of a lower region 
of boundary interaction ; an extensive upper region of buoyant diverging flow; 
and an intermediate region which consists of the visible vortex. Long offered his 
experimental vortices as models for the lower parts of a tornado vortex driven 
from above, suggesting that the region containing the driving mechanism and 
the upper region could collectively be simulated by a sink placed at the centre of 
the upper plate of a rotating tank. As was indicated in $ 1 ,  Long chose values of 
the flow parameters which led to the formation of vortices with Rossby numbers 
of order of magnitude comparable with those of tornado vortices, but his vortices 
are inadequate as models for tornado vortices because the experimental sink 
imposes a width scale on the lower flow region rather than allowing a width scale 
to be mutually determined by the driving force and lower flow regions. Turner’s 
vortices are low Rossby number vortices and therefore not directly related to 
tornado vortices, but they do have the special merit of allowing the driving 
force and lower flow regions to interact and determine together a width scale 
for the vortex. Unfortunately the upper flow region in Turner’s experiments 
is cut short by the presence of either a top plate or a free surface and this 
feature imposes restrictions on his vortices that do not occur on tornado 
vortices. 

It seems, then, that the existing experimental vortices fall well short of being 
adequate models for tornado vortices. From the remarks made in the preceding 
paragraph it appears that better modelling of the tornado vortex might involve 
using the driving mechanism employed by Turner in a tank rotating at a rate 

2-2 



20 L. M .  Leslie 

which will lead to the formation of moderate or high Rossby number vortices 
(the model investigated in t,his paper), and with some device for removing the 
constraints imposed by the presence of the upper boundary. There are several 
experimental techniques which may be used to eliminate the effect of the upper 
boundary and these will be described, as part of the answer to question (ii), in a 
later paper. 

I would like to express my gratitude to Dr R. K. Smith, of Monash University, 
who suggested the extremely simple device for modelling the mechanism driving 
the vortices and to Professor B. R. Morton, also of Monash University, with 
whom many hours were spent in clarifying the initial ideas and in discussing the 
significance of the results. Finally, I would like to  thank Mr J. L. McGregor for 
his expert programming advice. 
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